Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Annals of the Rheumatic Diseases ; 82(Suppl 1):578, 2023.
Article in English | ProQuest Central | ID: covidwho-20242313

ABSTRACT

BackgroundAnti-MDA5 antibody positive dermatomyositis (MDA5-DM) is characterized by high mortality due to rapid progressive ILD. MDA5 is a cytosolic protein and a family of RIG-I like receptor, which functions as a virus RNA sensor and induces the production of such as type-1 IFN. Although little is known about the pathogenesis of MDA5-DM, it is notable that the similarities were reported between COVID-19 infection and MDA5-DM. It may suggest that there is a common underlying autoinflammatory mechanism. We reported that in MDA5-DM, (1) RIG-I-like receptor signaling is enhanced and (2) antiviral responses such as type 1 IFN signaling are also enhanced as compare with anti-ARS-antibody positive DM, and (3) the key for survival is suppression of RIG-I-like and IFN signaling (EULAR2022, POS0390). We also found that a significant role for uncontrolled macrophage in the pathogenesis of ILD by our autopsy case. Recently, it has been reported that tacrolimus (TAC) and cyclophosphamide (CY) combination therapy (TC-Tx) has improved the prognosis of cases with early onset of the disease, but there are cases that cannot be saved. Therefore, we devised BRT therapy (BRT-Tx). The Tx combines baricitinib (BAR), which inhibits GM-CSF and IFN-mediated signaling and effectively suppresses uncontrolled macrophages, with rituximab (RTX) and TAC, which rapidly inhibits B and T cell interaction and ultimately prevents anti-MDA5 antibody production.ObjectivesTo determine the differences in gene expression between BRT and TC-Tx for MDA5-DM in peripheral blood.MethodsTotal of 6 MDA5-DM (TC: 3, BRT: 3) were included and all of them had multiple poor prognostic factors. Peripheral whole blood was collected at just before and 2-3 months after the treatment. RNA was extracted, and quantified using a next-generation sequencer. Differentially Expressed Genes (DEGs) were identified by pre vs. post treatment. Gene Ontology (GO), clustering and Gene Set Variation Analysis (GSVA) were performed to DEGs. As one BRT case was added since our last year's report, we also reanalyzed the surviving vs. fatal cases. The IFN signature was scored separately for Types 1, 2, and 3, and the changes between pre- and post-treatment were investigated.ResultsTwo of three cases with TC died during treatment, while all three cases on BRT recovered. The cluster analysis of the DEGs separated deaths from survivors, not by type of treatment. Comparing surviving and dead cases, GO analysis revealed that the immune system via immunoglobulins and B cells was significantly suppressed in surviving cases. GO analysis of DEGs in each therapeutic group showed that expression of B cell-related genes such as lymphocyte proliferation and B cell receptor signaling pathway were significantly suppressed in BRT-Tx. On the other hand, TC-Tx significantly suppressed such pathways as cell proliferation and cell surface receptor signaling, and was less specific for the target cells than BRT-Tx. The changes in IFN signature score after treatment showed an increase in type 2 and 3 IFN scores in all fatal cases and an increase in type 1 IFN score in one fatal case.ConclusionBRT-Tx significantly suppressed gene expression associated with B cells, while TC-Tx was characterized by low specificity of therapeutic targets and suppression of total cell proliferation. Comparison of surviving and dead cases revealed that the combination of RTX contributed to the success of treatment, as suppression of the immune system mediated by immunoglobulins and B cells is the key for survival. Analysis of the IFN signature revealed an increase in IFN score after treatment in fatal cases, indicating that the combination of BAR is beneficial. The superiority of BRT-Tx seems clear from the fact that all patients survived with BRT-Tx while only one/three patients survived with TC-Tx.REFERENCES:NIL.Acknowledgements:NIL.Disclosure of InterestsMoe Sakamoto: None declared, Yu Nakai: None declared, Yoshiharu Sato: None declared, Yoshinobu Koyama Speakers bureau: Abbvie, Asahikasei, Ayumi, BMS, Esai, Eli-Lilly, Mitsubishi Tanabe, Grant/research support from: Abbvie, GSK.

2.
Respir Res ; 24(1): 113, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2303662

ABSTRACT

BACKGROUND: Centromere protein O (CENPO) is a newly discovered constitutive centromeric protein, associated with cell death. However, little is known about how CENPO expression is associated with human cancers or immune infiltration. Here, we assessed the function of CENPO in pan-cancer and further verified the results in lung adenocarcinoma (LUAD) through in vitro and in vivo experiments. METHODS: Sangerbox and TCGA databases were used to evaluate the CENPO expression level in different human cancer types. A subsequent evaluation of the potential role of CENPO as a diagnostic and prognostic biomarker in pancancer was conducted. The CENPO mutations were analyzed using the cBioPortal database and its function was analyzed using the LinkedOmics and CancerSEA databases. The TIMER2 and TISIDB websites were used to find out how CENPO affects immune infiltration. The expression level of CENPO in LUAD was revealed by TCGA database and immunohistochemical (IHC) staining. Targetscan, miRWalk, miRDB, miRabel, LncBase databases, and Cytoscape tool were used to identify microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) that regulate expression and construct ceRNA network. Subsequently, loss-of-function assays were performed to identify the functions of CENPO on the malignant behavior and tumor growth of LUAD in vitro and in vivo experiments. RESULTS: In most cancers, CENPO was upregulated and mutated, which predicted a poorer prognosis. Furthermore, infiltration of CENPO and myeloid-derived suppressor cells (MDSC) showed a significant positive correlation, while T-cell NK infiltration showed a significant negative correlation in most cancers. CENPO was expressed at high levels in LUAD and was correlated with p-TNM stage. Furthermore, CENPO knockdown suppressed the malignant phenotypes of LUAD cells, manifested by slower proliferation, cycle in G2, increased apoptosis, decreased migration, and attenuated tumorigenesis. Furthermore, CENPO knockdown decreased CDK1/6, PIK3CA, and inhibited mTOR phosphorylation, suggesting that the mTOR signaling pathway may be involved in CENPO-mediated regulation of LUAD development. CONCLUSIONS: In pan-cancer, especially LUAD, CENPO may be a potential biomarker and oncogene. Furthermore, CENPO has been implicated in immune cell infiltration in pan-cancer and represents a potential immunotherapeutic target for tumor therapy.


Subject(s)
Adenocarcinoma , Lung Neoplasms , Humans , Carcinogenesis , Cell Death , Cyclic N-Oxides , Lung Neoplasms/genetics , Prognosis , Chromosomal Proteins, Non-Histone
3.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2268922

ABSTRACT

As hyperbaric oxygen (HBO) has been shown to mitigate the COVID-19 symptoms, we were interested in studying whether HBO exposure affects expression of viral entry genes and innate immune genes in the air-liquid interface (ALI)-cultured human bronchial epithelial cells (HBECs) derived from normal individuals (NHBECs) and age-matched COPD patients (DHBECs), which were cultured under normoxia or daily exposure of 40-min hyperbaric oxygen (HBO) with 100% O2 at 2.5 ATA for 28 days in total. We found for the first time that HBO exposure differentially regulated mucociliary differentiation of HBECs by respectively decreasing and increasing expression of CGRP, MUC5AC, FOXJ1, NOTCH3 and HEYL in NHBECs and DHBECs, and respectively decreased and increased FOXO1 expression whereas increased and decreased NFE2L2 and NFKB1 expression in NHBECs and DHBECs, in association with respectively decreased and increased expression the SARS-CoV-2 entry genes ACE2 and 2 TMPRSS2 and the tight junction protein genes TJP1 and TJP2, and in association with respectively increased and decreased expression of the cell growth and inflammatory transcription factors SRF, c-FOS and TP63, as well as the TLR pathway genes TLR3, AKT1, IL-1B, IL-5, IL-6, IL-33, IRAK4 and NFKBIA in NHBECs and DHBECs. (Figure Presented).

4.
Journal of Shanghai Jiaotong University (Medical Science) ; 42(11):1524-1533, 2022.
Article in Chinese | EMBASE | ID: covidwho-2201258

ABSTRACT

Objective To explore the genomic changes of human olfactory neuroepithelial cells after the novel coronavirus (SARS-COV-2) infecting the human body, and establish a protein-protein interaction (PPI) network of differentially expressed genes (DEGs), in order to understand the impact of SARS-COV-2 infection on human olfactory neuroepithelial cells, and provide reference for the prevention and treatment of new coronavirus pneumonia. Methods The public dataset GSE151973 was analyzed by NetworkAnalyst. DEGs were selected by conducting Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway analysis. PPI network, DEGs-microRNA regulatory network, transcription factor-DEGs regulatory network, environmental chemicals-DEGs regulatory network, and drug-DEGs regulatory network were created and visualized by using Cytoscape 3.7.2. Results After SAR-COV-2 invading human olfactory neuroepithelial cells, part of the gene expression profile was significantly up-regulated or down-regulated. A total of 568 DEGs were found, including 550 up-regulated genes (96.8%) and 18 down-regulated genes (3.2%). DEGs were mainly involved in biological processes such as endothelial development and angiogenesis of the olfactory epithelium, and the expression of molecular functions such as the binding of the N-terminal myristylation domain. PPI network suggested that RTP1 and RTP2 were core proteins. MAZ was the most influential transcription factor. Hsa-mir-26b-5p had the most obvious interaction with DEGs regulation. Environmental chemical valproic acid and drug ethanol had the most influence on the regulation of DEG. Conclusion The gene expression of olfactory neuroepithelial cells is significantly up-regulated or down-regulated after infection with SAR-COV-2. SARS-CoV-2 may inhibit the proliferation and differentiation of muscle satellite cells by inhibiting the function of PAX7. RTP1 and RTP2 may resist SARS-CoV-2 by promoting the ability of olfactory receptors to coat the membrane and enhancing the ability of olfactory receptors to respond to odorant ligands. MAZ may regulate DEGs by affecting cell growth and proliferation. Micro RNA, environmental chemicals and drugs also play an important role in the anti-SAR-COV-2 infection process of human olfactory neuroepithelial cells. Copyright © 2022 Editorial Department of Journal of Shanghai Second Medical University. All rights reserved.

5.
Plants (Basel) ; 12(1)2023 Jan 02.
Article in English | MEDLINE | ID: covidwho-2200635

ABSTRACT

Plant cell suspension cultures are widely used as a tool for analyzing cellular and molecular processes, metabolite synthesis, and differentiation, bypassing the structural complexity of plants. Within the range of approaches used to increase the production of metabolites by plant cells, one of the most recurrent is applying elicitors capable of stimulating metabolic pathways related to defense mechanisms. Previous proteomics analysis of tamarillo cell lines and cell suspension cultures have been used to further characterize and optimize the growth and stress-related metabolite production under in vitro controlled conditions. The main objective of this work was to develop a novel plant-based bioreactor system to produce hydrolytic enzymes using an elicitation approach. Based on effective protocols for tamarillo micropropagation and plant cell suspension culture establishment from induced callus lines, cell growth has been optimized, and enzymatic activity profiles under in vitro controlled conditions characterized. By testing different sucrose concentrations and the effects of two types of biotic elicitors, it was found that 3% (w/v) sucrose concentration in the liquid medium enhanced the production of hydrolytic enzymes. Moreover, casein hydrolysate at 0.5 and 1.5 g/L promoted protein production, whereas yeast extract (0.5 g/L) enhanced glycosidase activity. Meanwhile, chitosan (0.05 and 0.1 g/L) enhanced glycosidases, alkaline phosphates, and protease activities.

6.
International Journal of Nutrition, Pharmacology, Neurological Diseases ; 12(3):99-104, 2022.
Article in English | EMBASE | ID: covidwho-2144132

ABSTRACT

Background: The universal risk to mankind, coronavirus disease 2019 (COVID-19), shares etiological cofactors with a variety of diseases, including anemic chronic kidney disease patients (CKD) with cognitive dysfunction like Alzheimer disease (AD). Understanding the shared links between COVID-19 and CKD, as well as cognitive impairment such as AD, might aid in designing therapeutic ways to combat both. Given the need of developing COVID-19 medicine, the connection and symptoms of CKD with cognitive impairment have been reviewed here, with a focus on memory and learning disturbance. Objective(s): COVID-19 and CKD with cognitive dysfunction share angiotensin-converting enzyme 2 receptors, and AD indicators include amyloid, tau protein, and glycogen synthase kinase-3beta. Anemia in patients with CKD and pulmonary fibrosis is frequently treated with recombinant human erythropoietin (rHuEPO). Through nitric oxide stimulation, neuroprotection, and various organ hypoxias, rHuEPO promotes red blood cells (RBC) growth while also assisting oxygen delivery. Results and Conclusion(s): In COVID-19, rHuEPO may be advantageous. The common etiological variables and manifestations outlined in this review could aid in the development of therapeutic options for COVID-19 and CKD with cognitive impairment, such as AD, and so help to eliminate the ongoing universal risk. Copyright © 2022 Wolters Kluwer Medknow Publications. All rights reserved.

7.
Biol Cell ; 2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-2052324

ABSTRACT

INTRODUCTION: Autosomal dominant polycystic kidney disease (ADPKD) is characterised by progressive cysts formation and renal enlargement that in most of cases leads to end stage of renal disease (ESRD). This pathology is caused by mutations of either PKD1 or PKD2 genes that encode for polycystin-1 (PC1) and polycystin-2 (PC2), respectively. These proteins function as receptor-channel complex able to regulate calcium homeostasis. PKD1/2 loss of function impairs different signalling pathways including cAMP and mTOR that are considered therapeutic targets for this disease. In fact, Tolvaptan, a vasopressin-2 antagonist that reduces cAMP levels, is the only drug approved for ADPKD treatment. Nevertheless, some ADPKD patients developed side effects in response to Tolvaptan including liver damage. Conversely, mTOR inhibitors that induced disease regression in ADPKD animal models failed the clinical trials. RESULTS: Here, we show that the inhibition of mTOR causes the activation of autophagy in ADPKD cells that could reduce therapy effectiveness by drug degradation through the autophagic vesicles. Consistently, the combined treatment with rapamycin and chloroquine, an autophagy inhibitor, potentiates the decrease of cell proliferation induced by rapamycin. To overcome the dangerous activation of autophagy by mTOR inhibition, we targeted MDM2 (a downstream effector of mTOR signalling) that is involved in TP53 degradation by using RG7112, a small-molecule MDM2 inhibitor used for the treatment of haematologic malignancies. The inhibition of MDM2 by RG7112 prevents TP53 degradation and increases p21 expression leading to the decrease of cell proliferation and the activation of apoptosis. CONCLUSION: The targeting of MDM2 by RG7112 might represent a new therapeutic option for the treatment of ADPKD.

8.
HemaSphere ; 6:2239-2240, 2022.
Article in English | EMBASE | ID: covidwho-2032132

ABSTRACT

Background: Mantle cell lymphoma (MCL) is a B-cell tumor which often relapses. BCR inhibitors (Ibrutinib, Acalabrutinib) and antiapoptotic BCL2-family members blockers BH3-mimetics (Venetoclax, ABT-199) are effective drugs to fight MCL. However, the disease remains incurable, due to therapy resistance, even to the promising Venetoclax and Ibrutinib combination. Therefore, there is a profound need to explore novel useful therapeutic targets. CK2 is a S/T kinase overexpressed in several solid and blood tumors. We demonstrated that CK2, operating through a 'non-oncogene addiction' mechanism promotes tumor cell survival, and counteracts apoptosis, by activating pro-survival signaling cascades, such as NF-κ B, STAT3 and AKT. CK2 could regulate also BCL2 family members. The CK2 chemical inhibitor CX-4945 (Silmitasertib, Sil) is already under scrutiny in clinical trials in relapsed multiple myeloma, solid tumors and COVID-19. Aims: In this work, we tested the effect of CK2 chemical inhibition or knock down on Venetoclax (Ven)-induced cytotoxicity in MCL pre-clinical models to effectively reduce MCL cell growth and clonal expansion. Methods: CK2 expression and BCR/BCL2 related signaling components were analyzed in MCL cells and control cells by Western blotting. CK2 and BCL2 inhibition was obtained with Sil and Ven, respectively and with CK2 gene silencing through the generation of anti-CK2 shRNA IPTG-inducible MCL cell clones. Survival, apoptosis, mitochondrial membrane depolarization and proliferation were investigated by FACS analysis of AnnexinV/PI and JC-10 staining. The synergic action of Ven and Sil was analyzed by the Chou-Talalay combination index (CI) method. CK2 knock down in vivo was obtained in xenograft NOD-SCID mouse models Results: CK2 inactivation (with Sil or CK2 silencing) determined a reduction in the activating phosphorylation of S529 p65/RelA and S473 and S129 AKT, important survival cascades for MCL. Sil or CK2 silencing caused BCL2 and related MCL1 protein reduction, causing cell death. Importantly, we confirmed these results also in an in vivo xenograft mouse model of CK2 knockdown in MCL. Sil +Ven combination increased MCL cell apoptosis, as judged by the augmented frequency of Annexin V positive cells and expression of cleaved PARP protein, and JC-10 mitochondrial membrane depolarization, with respect to the single treatments. Captivatingly, Sil or CK2 gene silencing led to a substantial reduction of the Ven-induced increase of MCL-1, potentially counteracting a deleterious Ven-induced drawback. Analysis of cell cycle distribution confirmed an increased frequency of apoptotic cells in the sub G1 phase in CK2-silenced cells and a modulation of the other phases of the cell cycle. Remarkably, the calculated CI less than 1 suggested a strong synergic cell-killing effect between Sil and Ven, on all the cell lines tested, including those less sensitive or resistant to Ven Summary/Conclusion: We demonstrated that the simultaneous inhibition/knock down of CK2 and BCL2 synergistically cooperates in inducing apoptosis and cell cycle arrest of MCL malignant B-lymphocytes and has the potential of reducing MCL clonal growth, also counterbalancing mechanism of resistance that may arise with Ven. Therefore, CK2 is a rational therapeutic target for the treatment of MCL to be tested in combination with Ibrutinib or Ven.

9.
Theranostics ; 12(9):4067-4080, 2022.
Article in English | ProQuest Central | ID: covidwho-1842801

ABSTRACT

Cyclophilin A (CyPA) or peptidylprolyl isomerase A (PPIA), an immunophilin with peptidyl-prolyl cis/trans isomerase (PPIase) activity, is an abundant cellular protein widely expressed across various cell types and tissues, including the kidney. Expression of CyPA in the kidney is relatively higher in proximal tubular epithelial cells than others along the nephron. Alterations in expression and secretion of CyPA play important roles in physiological processes and pathophysiology of several diseases affecting the kidney. Herein, we provide a brief overview of CyPA structural biology and present the current update on its theranostic roles in various kidney diseases, including diabetic nephropathy, acute kidney injury, chronic kidney disease, renal fibrosis, and nephrotoxicity associated with organ transplantation. Notably, the diagnostic/prognostic role for urinary CyPA in several of these kidney diseases is promising. Finally, future perspectives on the CyPA research, especially targeting CyPA for therapeutics, are discussed. A comprehensive understanding of the theranostic roles of CyPA in kidney diseases is expected to provide novel insights into the design of new therapeutic interventions and prevention strategies.

10.
Annals of Intensive Care ; 12(1), 2022.
Article in English | ProQuest Central | ID: covidwho-1837129

ABSTRACT

BackgroundLymphopenia is a hallmark of severe coronavirus disease 19 (COVID-19). Similar alterations have been described in bacterial sepsis and therapeutic strategies targeting T cell function such as recombinant human interleukin 7 (rhIL-7) have been proposed in this clinical context. As COVID-19 is a viral sepsis, the objectives of this study were to characterize T lymphocyte response over time in severe COVID-19 patients and to assess the effect of ex vivo administration of rhIL-7.ResultsPeripheral blood mononuclear cells from COVID-19 patients hospitalized in intensive care unit (ICU) were collected at admission and after 20 days. Transcriptomic profile was evaluated through NanoString technology. Inhibitory immune checkpoints expressions were determined by flow cytometry. T lymphocyte proliferation and IFN-γ production were evaluated after ex vivo stimulation in the presence or not of rhIL-7. COVID-19 ICU patients were markedly lymphopenic at admission. Mononuclear cells presented with inhibited transcriptomic profile prevalently with impaired T cell activation pathways. CD4 + and CD8 + T cells presented with over-expression of co-inhibitory molecules PD-1, PD-L1, CTLA-4 and TIM-3. CD4 + and CD8 + T cell proliferation and IFN-γ production were markedly altered in samples collected at ICU admission. These alterations, characteristic of a T cell exhaustion state, were more pronounced at ICU admission and alleviated over time. Treatment with rhIL-7 ex vivo significantly improved both T cell proliferation and IFN-γ production in cells from COVID-19 patients.ConclusionsSevere COVID-19 patients present with features of profound T cell exhaustion upon ICU admission which can be reversed ex vivo by rhIL-7. These results reinforce our understanding of severe COVID-19 pathophysiology and opens novel therapeutic avenues to treat such critically ill patients based of immunomodulation approaches. Defining the appropriate timing for initiating such immune-adjuvant therapy in clinical setting and the pertinent markers for a careful selection of patients are now warranted to confirm the ex vivo results described so far.Trial registration ClinicalTrials.gov identifier: NCT04392401 Registered 18 May 2020, http:// clinicaltrials.gov/ct2/show/NCT04392401.

11.
Int Ophthalmol ; 42(6): 1749-1762, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1653602

ABSTRACT

BACKGROUND AND OBJECTIVE: Age-related macular degeneration (AMD) is one of the most common reasons for blindness in the world today. The most common treatment for wet AMD is the intravitreal injections for inhibiting vascular-endothelial-derived growth factor (VEGF). This treatment usually involves multiple injections and thus multiple clinic visits, which not only causes increased cost on national health services but also causes exposure to the hospital environment, which is sometimes high risk considering current COVID crisis. The treatment, in spite of the above concerns, is usually effective. However, in some cases, either the medicine fails to produce the anticipated favourable outcome, resulting in waste of time, medication, efforts, and above all, psychological distress to the patients. Hence, early predictability of anatomical as well as functional effectiveness of the treatment appears to be a very desirable capability to have. METHOD: A machine learning approach using adaptive neuro-fuzzy inference system (ANFIS) of two-sample prediction model has been presented that requires only the baseline measurements and changes in visual acuity (VA) as well as macular thickness (MAC) after four months of treatment to estimate the values of VA and MAC at 8 and 12 months. In contrast to most of the AI techniques, ANFIS approach has shown the capability of the algorithm to work with very small dataset as well, which makes it a perfect candidate for the presented solution. RESULTS: The presented model has shown to have a very high accuracy (> 92%) and works in near-real-time scenarios. It has been converted into a smart phone App, OphnosisAMD, for convenient usage. With this App, the clinician can visualize the progression of the patient for a specific treatment and can decide on continuing or changing the treatment accordingly. The complete AI engine developed with the ANFIS algorithm is localized to the phone through the App, implying that there is no need for internet or cloud connectivity for this App to function. This makes it ideal for remote usage, especially under the current COVID scenarios. CONCLUSIONS: With a smart AI-based App on their fingertips, the presented system provides ample opportunity to the doctors to make a better decision based on the estimated progression, if the same drug is continued with (good/fair prognosis) or alternate treatment should be sought (bad prognosis). From a functional point of view, a prediction algorithm is triggered through simple entry of the relevant parameters (baseline and 4 months only). No internet/cloud connectivity is needed since the algorithm and the trained network are fully embedded in the App locally. Hence, using the App in remote and/or non-connected isolated areas is possible, especially in the secluded patients during the COVID scenarios.


Subject(s)
COVID-19 , Cell Phone , Wet Macular Degeneration , Aged, 80 and over , Angiogenesis Inhibitors/therapeutic use , Artificial Intelligence , Centenarians , Humans , Intravitreal Injections , Nonagenarians , Prognosis , Ranibizumab , Treatment Outcome , Vascular Endothelial Growth Factor A , Wet Macular Degeneration/diagnosis , Wet Macular Degeneration/drug therapy
12.
Gülhane Tip Dergisi ; 63(4):232-237, 2021.
Article in Turkish | ProQuest Central | ID: covidwho-1615862

ABSTRACT

Vimentin is an intermediate filament protein responsible for maintaining cellular integrity and resistance to stress. It has a widespread distribution in many cells throughout the body where it forms a cytoskeletal framework. Vimentin plays an important role in the regulation of many cellular and tissue functions. It is overexpressed in malignancies, potentially malignant oral disorders and autoimmune conditions like rheumatoid arthritis and Crohn’s disease. It is associated with cell surface binding and replication of viruses such as human immunodeficiency virus (HIV), severe acute respiratory syndrome-related Coronavirus, dengue and encephalitis. In HIV, it is associated with the viral infectivity factor which is associated with HIV replication. It can be used as a biomarker for diagnosis and prognosis and has potential as a therapeutic target in many conditions. The present review focuses on the structure, functions, clinical implications and future scope of vimentin in the management of various diseases.

13.
Theranostics ; 11(14): 7005-7017, 2021.
Article in English | MEDLINE | ID: covidwho-1524524

ABSTRACT

The tumor suppressor protein p53 remains in a wild type but inactive form in ~50% of all human cancers. Thus, activating it becomes an attractive approach for targeted cancer therapies. In this regard, our lab has previously discovered a small molecule, Inauhzin (INZ), as a potent p53 activator with no genotoxicity. Method: To improve its efficacy and bioavailability, here we employed nanoparticle encapsulation, making INZ-C, an analog of INZ, to nanoparticle-encapsulated INZ-C (n-INZ-C). Results: This approach significantly improved p53 activation and inhibition of lung and colorectal cancer cell growth by n-INZ-C in vitro and in vivo while it displayed a minimal effect on normal human Wi38 and mouse MEF cells. The improved activity was further corroborated with the enhanced cellular uptake observed in cancer cells and minimal cellular uptake observed in normal cells. In vivo pharmacokinetic evaluation of these nanoparticles showed that the nanoparticle encapsulation prolongates the half-life of INZ-C from 2.5 h to 5 h in mice. Conclusions: These results demonstrate that we have established a nanoparticle system that could enhance the bioavailability and efficacy of INZ-C as a potential anti-cancer therapeutic.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Indoles/pharmacology , Lung Neoplasms/drug therapy , Nanoparticles/chemistry , Phenothiazines/pharmacology , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Biological Availability , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Humans , Indoles/chemistry , Indoles/pharmacokinetics , Indoles/therapeutic use , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Nanoparticles/toxicity , Nanoparticles/ultrastructure , Phenothiazines/chemistry , Phenothiazines/pharmacokinetics , Phenothiazines/therapeutic use , Spectroscopy, Fourier Transform Infrared , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
14.
JMIRx Med ; 1(1): e23582, 2020.
Article in English | MEDLINE | ID: covidwho-1067551

ABSTRACT

BACKGROUND: Approximately 80% of those infected with COVID-19 are immune. They are asymptomatic unknown carriers who can still infect those with whom they come into contact. Understanding what makes them immune could inform public health policies as to who needs to be protected and why, and possibly lead to a novel treatment for those who cannot, or will not, be vaccinated once a vaccine is available. OBJECTIVE: The primary objectives of this study were to learn if machine learning could identify patterns in the pathogen-host immune relationship that differentiate or predict COVID-19 symptom immunity and, if so, which ones and at what levels. The secondary objective was to learn if machine learning could take such differentiators to build a model that could predict COVID-19 immunity with clinical accuracy. The tertiary purpose was to learn about the relevance of other immune factors. METHODS: This was a comparative effectiveness research study on 53 common immunological factors using machine learning on clinical data from 74 similarly grouped Chinese COVID-19-positive patients, 37 of whom were symptomatic and 37 asymptomatic. The setting was a single-center primary care hospital in the Wanzhou District of China. Immunological factors were measured in patients who were diagnosed as SARS-CoV-2 positive by reverse transcriptase-polymerase chain reaction (RT-PCR) in the 14 days before observations were recorded. The median age of the 37 asymptomatic patients was 41 years (range 8-75 years); 22 were female, 15 were male. For comparison, 37 RT-PCR test-positive patients were selected and matched to the asymptomatic group by age, comorbidities, and sex. Machine learning models were trained and compared to understand the pathogen-immune relationship and predict who was immune to COVID-19 and why, using the statistical programming language R. RESULTS: When stem cell growth factor-beta (SCGF-ß) was included in the machine learning analysis, a decision tree and extreme gradient boosting algorithms classified and predicted COVID-19 symptom immunity with 100% accuracy. When SCGF-ß was excluded, a random-forest algorithm classified and predicted asymptomatic and symptomatic cases of COVID-19 with 94.8% AUROC (area under the receiver operating characteristic) curve accuracy (95% CI 90.17%-100%). In total, 34 common immune factors have statistically significant associations with COVID-19 symptoms (all c<.05), and 19 immune factors appear to have no statistically significant association. CONCLUSIONS: The primary outcome was that asymptomatic patients with COVID-19 could be identified by three distinct immunological factors and levels: SCGF-ß (>127,637), interleukin-16 (IL-16) (>45), and macrophage colony-stimulating factor (M-CSF) (>57). The secondary study outcome was the suggestion that stem-cell therapy with SCGF-ß may be a novel treatment for COVID-19. Individuals with an SCGF-ß level >127,637, or an IL-16 level >45 and an M-CSF level >57, appear to be predictively immune to COVID-19 100% and 94.8% (AUROC) of the time, respectively. Testing levels of these three immunological factors may be a valuable tool at the point of care for managing and preventing outbreaks. Further, stem-cell therapy via SCGF-ß and M-CSF appear to be promising novel therapeutics for patients with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL